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Abstract
This paper deals with the classical and quantum dynamics on convex co-
compact surfaces. We review the recent developments of the theory and
compare the asymptotic behaviour of both classical and quantum observables.
We show rigorously that the classical decay rate is larger than the quantum
decay rate. This is well known in the physics literature on chaotic scattering
but has never been verified mathematically.

PACS numbers: 03.65.Sq, 03.65.Yz, 05.45.Mt

1. Introduction

The analysis of open systems has a long history, both from the classical and quantum points of
view. The most popular model of open system whose classical dynamics are ‘strongly chaotic’
(i.e. hyperbolic) is the convex bodies scatterer (or pinball scatterer) which has been extensively
studied in both physical, see for example [3, 6–8, 11], and more mathematical literature
[12, 13, 17, 20, 28, 29]. However, the lack of symmetries and the complicated dynamical
geometry of these systems make them rather difficult to study and very few rigorous
mathematical results are available, especially when it comes to the quantum interpretation
of zeros of the so-called semi-classical dynamical zeta functions.

Motivated by the semi-classical study of Gaspard and Rice for open planar billiards
[7, 8], we will describe a simple analogue of the discs scatterer coming from hyperbolic
geometry where the high degree of symmetries of the manifold allows a precise (and
mathematically rigorous) description of the classical and quantum physics of these objects.
The semi-classical Gutzwiller–Voros zeta function turns out to be closely related to the Selberg
zeta function and there is a mathematically proven [26] one-to-one correspondence between its
non-trivial zeros and the scattering poles of the Laplacian, i.e. the semi-classical approximation
is exact in that setting.

Because of the (relative) simplicity of their geometry, most relevant dynamical quantities
are explicit, in particular we can define precisely and compute the classical and quantum escape
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rates of observables on these surfaces. We are thus able to check rigorously that (quantum)
resonant modes have a longer lifetime than the classical observables, which is one of the main
conclusions of [7, 8].

2. Convex co-compact surfaces and geodesic flow

The hyperbolic two-dimensional space can be viewed as the upper Poincaré half-plane

H
2 = {x + iy ∈ C : y > 0},

endowed with the Riemannian metric of constant negative curvature −1 given by

ds2 = dx2 + dy2

y2
.

An alternative isometric version (and more convenient for our purpose) of the half-plane is the
disc H

2 = {z ∈ C : |z| < 1}, endowed with the metric

ds2 = 4 dz dz

(1 − |z|2)2
.

The geodesics lines (the free trajectories) are exactly the circles and lines orthogonal to the
boundary. The geodesic flow φt on H

2 is the motion (at unit speed) along the geodesic lines.
The natural phase space of the geodesic flow is the unit tangent bundle

T1H
2 =

{
(z, ν) ∈ H

2 × R
2 :

2‖ν‖
1 − |z|2 = 1

}
,

where ‖ν‖ denotes the standard Euclidean norm. Isometries of the hyperbolic disc are the
homographic transformations of the form z �→ az+b

bz+a
, where a, b ∈ C and satisfy |a|2−|b|2 = 1.

Let Ĉ denote the Riemann sphere Ĉ = C ∪ {∞}. The discrete groups we are
interested in are the Fuchsian Schottky groups defined as follows. Let C1, . . . , C2p denote
2p geodesics of H

2 and let D1, . . . ,D2p be 2p Euclidean open discs such that for all
i = 1, . . . , 2p, the boundary of the disc Di satisfies ∂Di ∩ H

2 = Ci . We assume that for all
i �= j, Cl(Di ) ∩ Cl(Dj ) = ∅, where Cl denotes the closure. Let h1, . . . , hp be isometries of
the hyperbolic disc such that hi(Di ) = Ĉ\Cl

(
D2p−i+1

)
. For all 1 � i � p, we set in addition

h2p−i+1 = h−1
i .

The group � generated by h1, . . . , h2p is a discrete group called a Fuchsian1 Schottky
group. The quotient M = �\H

2 by such a group is called a convex co-compact surface. It is a
non-compact hyperbolic Riemann surface with infinite hyperbolic area. A natural fundamental
domain for the action of � on H

2 is simply R = H
2\( ∪2p

i=1 Di

)
(see figure 1).

The geodesic flow φt acting on T1M is simply the geodesic flow on T1H
2 modulo the

group �. In the example of figure 1, the surface M = �\H
2 is a pair of pants with three

funnels, and the dashed geodesics γ1 and γ2 in H
2 correspond to two closed geodesics on the

surface, after identification by h1 and h2.
A convex co-compact surface can equivalently be built by considering a compact

hyperbolic surface N whose boundary ∂N is a finite set of closed geodesics γ1, . . . , γk , and by
gluing to each closed geodesic γi of length l(γi) a funnel Fi = (R/l(γi)Z)u × R

+
v , endowed

with the warped metric ds2 = cosh2(v) du2 + dv2. The surface N is called the Nielsen region
of the convex co-compact surface M = N ∪ ( ⋃k

i=1 Fi

)
.

Under the action of the group �, points in H
2 tend to the boundary ∂H

2 which is the unit
circle in the disc model. The closure of these accumulation points is a subset of ∂H

2 called the

1 Here Fuchsian means that this group preserves the unit disc. In the general definition of a Schottky group, one
does not require this property.
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M = Γ\H
2

γ1γ2

Figure 1. The fundamental domain R and the associated surface M = �\H
2.

Figure 2. A typical limit set of Schottky groups.

limit set � of �. In the case of Schottky groups, when � is non-elementary (p � 2), � has a
nice quasi self-similar structure (it is a Cantor set, see figure 2), and its Hausdorff dimension
δ is non-entire, i.e. 0 < δ < 1.

The dimension δ can numerically be computed via the precise methods described in
[19, 14].

3. Dimension of trapped set and classical escape rate

The trapped set � of geodesics on T1M is defined as the compact φt -invariant set of points
x ∈ T1M such that φt(x) does not escape into a funnel, i.e. remains inside the Nielsen region
N for all t ∈ R. There is a natural one-to-one correspondence (see [22], chapter 8) between
the limit set � and the trapped set � and we have dim(�) = 2δ + 1. Because of the negative
curvature, the geodesic flow is hyperbolic. In addition, the set of closed geodesics (periodic
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orbits of the flow) is dense in �, i.e. axiom A of Smale is satisfied. The topological entropy
of the flow on � is positive and is exactly the dimension of the limit set δ (see Sullivan [30]).
This fact can alternatively be derived from the Bowen formula for the Hausdorff dimension
[1], and Abramov’s formula for the topological entropy of suspension flows.

Since 2δ + 1 < 3, the trapped set is of zero Liouville measure, thus almost all trajectories
under φt escape to infinity. So, the dynamics on T1M are of two types: the strongly chaotic
motion on � and the Liouville-almost everywhere behaviour of points which escape to infinity.
A natural question follows: what is the average escape speed? Let us be more precise. Choose
a Riemannian metric g on T1M (a natural choice is the Sasaki metric, see [23], whose associated
volume Volg is the Liouville measure) and let d be the distance on T1M associated with g.
Given x ∈ � and ε > 0 we can define for all T � 0 the dynamical ball Bx(ε, T ) by

Bx(ε, T ) = {y ∈ T1M : ∀ 0 � t � T , d(φtx, φty) � ε}.
Set U ε

T = ∪x∈�Bx(ε, T ). What is the behaviour of Volg
(
U ε

T

)
as T → ∞? The following

result holds.

Proposition 3.1. For all ε > 0 small enough, we have

lim sup
T →+∞

log Volg
(
U ε

T

)
T

= δ − 1.

Since for all surfaces described above we have δ < 1, the rate of decay is exponential and is
related to the dimension of the limit set and thus to the ‘size’ of �. The limit case δ → 1
corresponds to surfaces of finite area with cuspidal ends. In that case, the trapped set is the
whole unit tangent bundle and the escape rate is vanishing. We call the quantity αc(M) = 1−δ

the classical escape rate.
Let us give a brief outline of the proof of proposition 3.1. By the volume lemma of

Bowen–Ruelle [2], prop. 4.2 and 4.4, we have directly

lim sup
T →+∞

log Volg
(
U ε

T

)
T

= P(−λu),

where λu(x) is the local unstable Lyapounov exponent defined by

λu(x) = lim
t→0

1

t
log

∣∣det
(
Dφt

∣∣
Eu

x

)∣∣,
Eu

x being the unstable direction of the flow. The notation P(−λu) stands for the topological
pressure of −λu. The topological pressure (see [23] for a review of the different formulae
available for flows) is defined for continuous functions on the basic set � by

P(f ) = sup
µ∈Minv

(
hµ(φ1) +

∫
�

f dµ

)
,

where hµ(φt ) is the Kolmogorov–Sinai entropy of the time one map of the flow and the
supremum is taken over all φt -invariant probability measures. Because we are in a constant
negative curvature case, a simple algebraic calculation involving the model T1M � SL2(R)/�

shows that λu ≡ 1. We have therefore P(−λu) = supµ∈Minv
hµ(φ1) − 1 = δ − 1, because δ is

the topological entropy of the flow.
It is very likely that the following more meaningful result holds. Given two smooth

enough and compactly supported observables f1, f2 on T1M whose supports are close enough
to the non-wandering set �, then as t → +∞,∫

T1M

(f1 ◦ φt)f2 dVol = e(δ−1)t ν(f2)

∫
T1M

f1 dVol + O(e−αt ),
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with α > 1 − δ and ν is a measure supported by the set of stable manifolds. The fact that the
left side decays exponentially for Hölder observables follows from [27]. A precise expansion
as stated above should follow from an adaptation of Dolgopyat’s arguments [21].

4. Scattering resonances and upper bound on their lifetime

Quantization of the free motion on M starts with the (positive) Laplace–Beltrami operator �
H

2

on H
2. In the disc model, �

H
2 acts on smooth functions f ∈ C∞(H2) by the formula

�
H

2f = − (1 − |x + iy|2)2

4

(
∂2
xf + ∂2

yf
)
.

Since �
H

2 commutes with isometries of the hyperbolic space, the Laplace–Beltrami operator
�M is well defined on smooth compactly supported functions f ∈ C∞

0 (�\H
2) by

�M(f )(�x) = �2
H
(f̃ )(x),

where f̃ is the �-periodic function defined on H
2 by f̃ (x) = f (�x). The operator �M has a

unique self-adjoint extension to a dense subdomain of the Hilbert space L2(M, dm), where m
is the natural Riemannian area measure on M.

The point spectrum of �M is at most finite: if δ � 1
2 then it is empty and if δ > 1

2 the
point spectrum is a finite subset of

(
0, 1

4

)
, and the lowest eigenvalue is δ(1 − δ). The rest of

the spectrum is absolutely continuous and is the half-line
[

1
4 , +∞)

(see the work of Patterson
and Lax–Phillips [15, 16, 24]). For all λ ∈ C with Im(λ) < 0 (except for a finite set of values
corresponding to the point spectrum) and g ∈ L2(M, dm), the equation(

�M − 1
4 − λ2

)
f = g,

has a unique solution in L2(M, dm) given by

f (w) =
∫

M

Gλ(w,w′)g(w′) dm(w′),

where Gλ(w,w′) is the Green function of �M − 1
4 − λ2 (or equivalently, the Schwarz kernel

of the resolvent). An explicit expression for Gλ(w,w′) can be obtained simply by periodizing
the free Green function G0

λ(w,w′) of the hyperbolic plane H
2,

Gλ(w,w′) =
∑
γ∈�

G0
λ(γw,w′), Im(λ) <

1

2
− δ

G0
λ(w,w′) = 2−2−2iλ�

(
1
2 + iλ

)
√

π�(1 + iλ)
cos h−1−2iλ

[
d(w,w′)

2

]
× F

(
1

2
+ iλ,

1

2
+ iλ, 1 + 2iλ; cos h2

[
d(w,w′)

2

])
,

where d(w,w′) denotes the hyperbolic distance in H
2, �(s) is the usual Euler gamma function

and

F(a, b, c; u) = 1 +
a.b

1.c
u +

a(a + 1)b(b + 1)

1.2c(c + 1)
u2 + · · ·

is the hypergeometric function.
As a function of λ, Gλ is meromorphic on {Im(λ) < 0}, and has a meromorphic extension

to C (see [18]), whose poles (independent of w,w′) are called resonances. These poles have
also a natural interpretation in terms of poles of a suitably defined scattering matrix (see [10]).



10726 F Naud

Im(λ) = 0

ε

Im(λ) = αr

Im(λ) = αc

Figure 3. The non-physical upper half-plane and resonances.

In addition, Gλ has at most a finite number of poles in the lower half-plane {Im(λ) < 0} (the
physical sheet) corresponding to the possible point spectrum of �M .

The semi-classical Gutzwiller–Voros zeta function of these surfaces (without boundaries)
is according to general theory

Z(λ) = exp

−
∞∑

k=1

1

k

∑
γ∈P

e−iλkl(γ )∣∣det
(
P k

γ − I
)∣∣ 1

2

 ,

where P is the set of primitive periodic orbits γ of the geodesic flow whose period is
denoted by l(γ ), and Pγ is the linear Poincaré map of γ . Since we have

∣∣det
(
P k

γ − I
)∣∣ =

(ekl(γ ) − 1)(1 − e−kl(γ )), it follows that Z(λ) = ZM

(
1
2 + iλ

)
, where ZM(s) is the Selberg zeta

function of M, defined classically by the Euler product

ZM(s) =
∞∏

k=0

∏
γ∈P

(1 − e−(s+k)l(γ )).

By the work of Patterson and Perry [26] on the divisor of ZM(s), it follows that, up to a
countable set of trivial zeros on the imaginary axis located at i

(
k + 1

2

)
, k ∈ N

∗, the zeros of
Z(λ) are the poles of the Green function Gλ, with the same multiplicities.

In the most interesting case where there are no L2-eigenfunctions and i
(
δ − 1

2

)
is a

scattering pole, i.e. δ < 1
2 , and assuming that � is non-elementary, we can draw a more precise

picture (see figure 3):

• There are no resonances in the half-plane
{
Im(λ) < 1

2 − δ
}
.

• The simple scattering pole i
(

1
2 − δ

)
is isolated by a gap in the scattering spectrum, i.e.

there exists ε > 0 such that all the other resonances lie in
{
Im(λ) � 1

2 − δ + ε
}
.

The leading decay rate of resonances αr is given in the λ-plane by the smallest imaginary
part of the resonances which is αr = 1

2 − δ < αc = 1 − δ. For the benefit of the reader, let
us recall some of the key results proved in [21] that allow us to obtain the existence of this
spectral gap in the scattering spectrum. A first observation (due to Y Sinai) is the fact that the
Ruelle zeta function ζ(s) defined for Re(s) > δ by

ζ(s) =
∏
γ∈P

(1 − e−sl(γ ))−1,
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is related to the Selberg zeta function by

ZM(s) =
∏
k∈N

ζ(s + k)−1.

Therefore, any knowledge on the analytic singularities of ζ(s) close to {Re(s) = δ} implies
some information on the resonances (recall that λ ∈ C is a resonance if and only if 1

2 + iλ is
a zero of ZM(s)). By the classical results of Parry and Pollicott [25], it is known that ζ(s)

has a meromorphic extension to a strip {δ − ε < Re(s) � δ}, for some ε > 0. The possible
poles of ζ(s) in this strip are given by the spectrum of so-called complex transfer operators.
Let us recall briefly their definition. For all 1 � i � 2p, set Ii = Cl(Di ) ∩ {|z| = 1}.
Each Ii is a closed interval on the unit circle ∂H

2, and if we define the Bowen-series map
T : I := ∪1�i�2pIi → ∂H

2 by

T x = hi(x), if x ∈ Ii,

then we get a Markov expanding map (see Bowen [1]), whose dynamics encodes the action
of the Schottky group � on ∂H

2. Let C1(I ) denotes the Banach space of C1 functions on
I endowed with its standard norm ‖.‖C1 . The transfer operators Ls , where s is a complex
parameter, are defined on C1(I ) by

Ls(f )(x) =
∑
Ty=x

|T ′(y)|−sf (y).

A key result that follows from [25] is that s0 ∈ {δ − ε < Re(s) � δ} is a pole of ζ(s) if and
only if 1 is an eigenvalue of Ls0 : C1(I ) → C1(I ). In [21], we actually proved (theorem 2.3)
the following estimate.

Theorem 4.1. There exist some constants 0 < ρ0 < 1, 0 < ε � ε, and C > 0 such that for
all δ − ε < Re(s) � δ and all |Im(s)| large enough, we have the contraction estimate∥∥Ln

s

∥∥
C1 � C|Im(s)|3/2ρn

0 .

It is clear, using the spectral radius formula, that it implies that 1 cannot be an eigenvalue
of Ls for all δ − ε < Re(s) � δ and all |Im(s)| large. It is also shown in [21] that on the
vertical line {Re(s) = δ}, the Ruelle zeta function ζ(s) has no poles except at s = δ which is a
simple pole. Therefore at least in a narrow vertical strip close to {Re(s) = δ}, the zeta function
ζ(s) has no singularities, which in view of the above discussion, shows the existence of a
resonance-free strip. The proof of theorem 4.1 is based on a uniform cancellation principle
discovered by Dmitry Dolgopyat in his work on Anosov flows [5]. Roughly speaking, one
has to show that for large |Im(s)| and large n, the powers Ln

s (given by large sums over the
preimages of T n) exhibit enough cancellations.

Using similar techniques, we expect to be able to prove the following more physical result.
Let f ∈ C∞

0 (M) be a smooth compactly supported initial data and let

u(t) = sin(t
√

�M − 1/4)√
�M − 1/4

f

be the solution of the wave equation
∂2
t u(t) = −(�M − 1

4 )u(t)

u(0) = 0
ut (0) = f.

Consider χ ∈ C∞
0 (M), then there exists g ∈ C∞

0 (M) such that as t → +∞,

χ
sin(t

√
�M − 1/4)√

�M − 1/4
f = e(δ−1/2)t

δ − 1/2
g + O(e−αt ), (1)
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for some α > 1/2−δ. An a priori estimate of the Green function, not yet available, is required
to take advantage of the already proved information on the location of resonances. We point
out that in the case of the hyperbolic cylinder (which corresponds to p = 1 in our notations),
Christiansen and Zworski [4] have obtained a full resonance expansion of solutions of the
wave equation. In that case, resonances form a lattice and the scattering matrix can be studied
explicitly. We also observe that (1) is formally in agreement with the existing trace formula
[9] for resonances. Indeed, let ϕ ∈ C∞

0 (R∗
+) be a smooth, compactly supported test function,

then the renormalized wave trace (the appropriate renormalization, also called 0-calculus, is
designed to get rid of the divergence due to infinite volume and defines a so-called 0-volume)

u(t) = 0 − Tr cos

(
t

√
�M − 1

4

)
,

is a tempered distribution2 which satisfies

u(t) = e(δ− 1
2 )t + ũ(t),

where the remainder ũ(t) has the property∫
ũ(t)ϕ(u − T ) du = O(e(δ− 1

2 −ε)T ),

for some ε > 0.
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